Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Louise K. Mortensen, Andrew D.

 Bond* and Christine J. McKenzieUniversity of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense,
Denmark
Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.073$
Data-to-parameter ratio $=20.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(1,8-Dinitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) tribromide

Br 2

Figure 1
The title complex, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted. [Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.]

Figure 2
Projection along the $\mathrm{N} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$ vector, with the front half of the molecule shown with solid bonds, and the back half shown with open bonds. The triamino caps adopt a staggered arrangement in projection, while the planes of the nitro groups form a dihedral angle of $77.0(2)^{\circ}$.
mately normal to the plane of the layers (Fig. 3). Projection on to a single such layer reveals an approximate hexagonal arrangement (Fig. 4). The layers stack in an $A B A B$ manner, so that the complexes form an approximate hexagonal closepacked arrangement in three dimensions.

By comparison, the chloride anions in the structure of $[\mathrm{CoR}] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Clark et al., 1993) occupy positions simlar to those occupied by bromide in $[\mathrm{Co} R] \mathrm{Br}_{3}$. However, one chloride anion in $[\mathrm{Co} R] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ serves as a bridge between two $\mathrm{NH} \cdots \mathrm{NH}$ edges in neighbouring complexes, thereby adopting essentially square-planar coordination. The complexes may again be envisaged to lie in layers [in the (1 $\overline{1} 0$) planes], with the square planes around Cl^{-}lying approximately in the plane of the layers. Thus, the C_{4} axes of the central CoN_{6} octahedra lie close to the normal to the plane of the layers in this case (Fig. 5). This arrangement introduces

Figure 3
The structure may be considered in terms of layers of complexes parallel to the ($2 \overline{2} 2$) planes, with the C_{3} axes of the central CoN_{6} octahedra pointing approximately perpendicular to the planes of the layers. The layers are stacked in an $A B A B$ manner.

Figure 4
Projection on to the plane of a single layer in the ($2 \overline{2} 2$) planes, showing the approximate hexagonal arrangement of complexes. Hydrogen bonds are shown as solid blue lines.
gaps between the chloride anions that are associated with the remaining $\mathrm{NH} \cdots \mathrm{NH}$ edges of the CoN_{6} octahedra, which are bridged by water molecules.

Experimental

[Co(ethylenediamine) $\left.)_{3}\right] \mathrm{I}_{3}(2.5 \mathrm{~g})$ and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g})$ were dissolved in water (90 ml). $\mathrm{CH}_{3} \mathrm{NO}_{2}(5 \mathrm{ml})$ and 37% aqueous formaldehyde (40 ml) were added with stirring and the yellow-brown solution was warmed to 313 K for ca 2 h . The mixture was then cooled
in an ice bath, and the yellow solid deposited was collected under suction and redissolved in ca 30 ml of hot 1 M acetic acid. Concentrated $\mathrm{HBr}(15 \mathrm{ml})$ was added and the mixture was cooled slowly, yielding crystals suitable for X-ray analysis.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4}\right)\right] \mathrm{Br}_{3}$
$M_{r}=673.12$
Monoclinic, $C 2 /{ }^{\circ}$
$a=15.9928$ (7) \AA
$b=13.4357$ (6) \AA
$c=10.7799$ (4) \AA
$\beta=92.111$ (2) ${ }^{\circ}$
$V=2314.75(17) \AA^{3}$
$Z=4$
$D_{x}=1.932 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6123
reflections
$\theta=2.6-28.2^{\circ}$
$\mu=5.96 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Block, orange
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker-Nonius X8APEX-II CCD diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.224, T_{\text {max }}=0.304$
13612 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.073$
$S=1.03$
2852 reflections
137 parameters
H -atom parameters constrained

2852 independent reflections
2451 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-20 \rightarrow 21$
$k=-15 \rightarrow 17$
$l=-14 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0375 P)^{2}\right. \\
& +4.1623 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.89 \mathrm{e}^{-3} \\
& \begin{array}{l}
\Delta \rho_{\max }=0.89 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.64 \AA^{-3}
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{N} 3$	$1.966(2)$	$\mathrm{Co} 1-\mathrm{N} 4$	$1.975(2)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.9672(19)$		
$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 3^{\mathrm{i}}$	$86.10(12)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4^{\mathrm{i}}$	$86.33(8)$
$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 2$	$91.33(8)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4$	$90.92(8)$
$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$91.74(8)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4$	$90.75(8)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$175.79(12)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 4^{\mathrm{i}}$	$92.17(12)$
$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4^{\mathrm{i}}$	$176.15(8)$		

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{i}}$	0.93	2.40	$3.333(2)$	177
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{Br} 1^{\mathrm{ii}}$	0.93	2.37	$3.275(2)$	163
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{Br} 2^{\mathrm{i}}$	0.93	2.35	$3.268(2)$	169

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $-x+1,-y,-z+1$.
H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms bound to N atoms were visible in

Figure 5
Layers in the chloride salt $[\mathrm{CoR}] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Clark et al., 1993) lying parallel to the ($1 \overline{1} 0$) planes. In this case, the C_{4} axes of the central CoN_{6} octahedra in each complex point approximately perpendicular to the layer plane, leaving gaps between the chloride anions that are occupied by water molecules. Hydrogen bonds are shown as solid blue lines. In this projection, the chloride anions in square-planar coordination environments appear at the corners of the unit cell.
difference Fourier maps, but were included in calculated positions and allowed to ride, with $\mathrm{N}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: $\operatorname{SHELXTL}$; software used to prepare material for publication: SHELXTL.

We are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet for provision of the X-ray equipment.

References

Achilleos, A. A., Gahan, L. R., Hambley, T. W., Healy, P. C. \& Weedon, D. M. (1989). Inorg. Chim. Acta, 157, 209-214.

Bernhardt, P. V., Dyahningtyas, T. E., Harrowfield, J. M., Kim, J.-Y., Kim, Y. \& Rukmini, E. (2003). Aust. J. Chem. 56, 1187-1191.
Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker-Nonius (2004). APEX2. Version 1.0-22. Bruker-Nonius BV, Delft, The Netherlands.
Clark, I. J., Geue, R. J., Engelhardt, L. M., Harrowfield, J. M., Sargeson, A. M. \& White, A. H. (1993). Aust. J. Chem. 46, 1485-1505.
Geue, R. J., Hambley, T. W., Harrowfield, J. M., Sargeson, A. M. \& Snow, M. R. (1984). J. Am. Chem. Soc. 106, 5478-5488.

Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). $S A D A B S$. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

